

Mathematical studies Standard level Paper 1

	Candidate session number											

1 hour 30 minutes

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- A clean copy of the mathematical studies SL formula booklet is required for this paper.
- Answer all questions.
- Answers must be written within the answer boxes provided.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- The maximum mark for this examination paper is [90 marks].

8818-7401 © International Baccalaureate Organization 2018

Maximum marks will be given for correct answers. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. Answers must be written within the answer boxes provided. Solutions found from a graphic display calculator should be supported by suitable working, for example, if graphs are used to find a solution, you should sketch these as part of your answer.

1. The volume of a hemisphere, V, is given by the formula

$$V = \sqrt{\frac{4S^3}{243\pi}},$$

where S is the total surface area.

The total surface area of a given hemisphere is $350\,\mathrm{cm}^2$.

(a) Calculate the volume of this hemisphere in cm³. Give your answer correct to **one decimal place**.

[1]

(b) Write down your answer to part (a) correct to the nearest integer.

[3]

(c) Write down your answer to **part** (b) in the form $a \times 10^k$, where $1 \le a < 10$ and $k \in \mathbb{Z}$. [2]

Working:	
----------	--

1	a)	١																																
١	u,	,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

2. The histogram shows the lengths of 25 metal rods, each measured correct to the nearest cm.

(a) Write down the modal length of the rods.

[1]

(b) Find the median length of the rods.

[3]

The upper quartile is 4 cm.

- (c) Calculate
 - (i) the lower quartile;

(ii) the interquartile range.

[2]

			ng	
w	\sim	'VI	na	•
vv	UI	NΙ	пч	
	_		J	

Ar	าင	w	РI	Э.	•

- (a)
- (b)
- (c) (i)
 - (ii)

Turn over

3.	Harr	y travelled from the USA to Mexico and cha	nged 700 dollars (USD) into pesos (MXN).			
	The	exchange rate was $1 \text{ USD} = 18.86 \text{ MXN}$.				
	(a)	Calculate the amount of MXN Harry recei	ved.	[2]		
		his return, Harry had $2400\mathrm{MXN}$ to change the was a 3.5% commission to be paid on the				
	(b)	Calculate the value of the commission, in	MXN, that Harry paid.	[2]		
	The	exchange rate for this exchange was 1 USI	$\mathbf{D} = 17.24 \mathrm{MXN} .$			
	(c)	Calculate the amount of USD Harry received	d. Give your answer correct to the nearest cent.	[2]		
Wo	rking:	<u> </u>				
			A			
			Answers:			
			(a)	•		
			(b)	•		
1			\-',	-		

-4-

4. Abhinav carries out a χ^2 test at the 1% significance level to determine whether a person's gender impacts their chosen professional field: engineering, medicine or law. He surveyed 220 people and the results are shown in the table.

	Engineering	Medicine	Law
Male	55	30	25
Female	35	45	30

(a)	State the null hypothesis, $H_{\scriptscriptstyle 0}$, for this test.	[1]
(b)	Calculate the expected number of male engineers.	[2]
(c)	Find the p -value for this test.	[2]
Abhi	nav rejects H_0 .	
(d)	State a reason why Abhinav is incorrect in doing so.	[1]

(d)	State a reason why Abhinav is incorrect in doing so. [1]
Working:	
	Answers:
	(a)
	(b)
	(c)
	(d)

Turn over

5. The table shows the first five terms of three sequences: u_n , v_n and w_n .

	n									
	1	2	3	4	5					
u_n	10	20	40	80	160					
v_n	10	20	30	60	100					
w_n	10	20	30	40	50					

1	(a)	\ State	which	sequence	ie
	a) State	WHICH	sequence	15

(i)	arithm	etic:
٧٠/	٠	••,

(ii)	geometric.	[2]
()	9	L

- (b) Find the exact value of the 11th term of the geometric sequence. [2]
- (c) Find the sum of the first 20 terms of the arithmetic sequence. [2]

Vorking:	
	Answers:
	(a) (i)
	(ii)
	(b)
	(c)

6. (a) Complete the following truth table.

p	q	$p \lor q$	$\neg q$	$p \land \neg q$	$\neg(p \lor q)$	$(p \land \neg q) \Rightarrow \neg (p \lor q)$
Т	Т	Т				
Т	F	Т				
F	Т	Т				
F	F	F				

(b) State whether the statement $(p \land \neg q) \Rightarrow \neg (p \lor q)$ is a contradiction, a tautology or neither. Give a reason for your answer.

[2]

[4]

Working:	
	Answer:
	(b)

- 7. Nick has $$150\,000$ in a trust fund. Each year he donates $8\,\%$ of the money remaining in his trust fund to charity.
 - (a) Determine the maximum number of years Nick can donate to charity while keeping at least $$50\,000$ in the trust fund.

[3]

Louise invests $\$200\,000$ in a bank account that pays a nominal interest rate of $5\,\%$, compounded quarterly, for eight years.

(b) Calculate the value of Louise's investment at the end of this time. Give your answer correct to the nearest cent.

[3]

Working:	
	Answers:
	(a)
	(b)
	ζ-,

8. A bag contains 5 red and 3 blue discs, all identical except for the colour. First, Priyanka takes a disc at random from the bag and then Jorgé takes a disc at random from the bag.

(a) Complete the tree diagram.

[3]

(b) Find the probability that Jorgé chooses a red disc.

[3]

(b)

9. A solid glass paperweight consists of a hemisphere of diameter $6\,\mathrm{cm}$ on top of a cuboid with a square base of length $6\,\mathrm{cm}$, as shown in the diagram.

diagram not to scale

The height of the cuboid, x cm, is equal to the height of the hemisphere.

- (a) (i) Write down the value of x.
 - (ii) Calculate the volume of the paperweight.

[4]

 $1\,\mathrm{cm^3}$ of glass has a mass of 2.56 grams.

(b) Calculate the mass, in grams, of the paperweight.

[2]

Wo	king:
----	-------

А	n	S	W	е	rs	:

(a)	(i)																													
-----	-----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

(ii)

(b)																																
-----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

10.	Consider	the	following	statements.
10.	CONSIDE	uic	IOIIOWIIIQ	statements.

p: it can go wrong q: it does go wrong

Write down in symbolic form: (a)

> If it does not go wrong then it cannot go wrong. [2]

Write down in words the argument $p \Rightarrow q$. [2] (b)

(c)	Write down in words the inverse of $p \Rightarrow q$.		[2]
Working:			
		Δns	swers:
		(a)	
		(b)	
		(c)	

Turn over

11. Consider the curve $y = 5x^3 - 3x$.

(a) Find
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$
.

[2]

The curve has a tangent at the point P(-1, -2).

(b) Find the gradient of this tangent at point P.

[2]

(c) Find the equation of this tangent. Give your answer in the form y = mx + c.

[2]

|--|

_						
л	n	c	۱A	$\boldsymbol{\alpha}$	rs	
~		Э	V١	76	13	

12. The diagram shows a triangle defined by the points A(3, 9), B(15, 6) and C(5, 3).

diagram not to scale

(a) Calculate the gradient of the line AC.

[2]

(b) Determine, giving a reason, whether angle \hat{ACB} is a right angle.

[2]

The straight line, L, is parallel to BC and passes through A.

(c) Find the equation of L. Give your answer in the form ax + by + d = 0, where a, b and d are integers. [2]

V	v	^	r	k	i	n	g	
v	v	v	ı	N	ı	ш	ч	•

Answers:	

Turn over

13. Bella throws a ball from the top of a wall onto flat horizontal ground.

The path of the ball is modelled by the quadratic curve $y = 3 + 4x - x^2$, where x represents the horizontal distance the ball is thrown and y represents the height of the ball above the ground. All distances are measured in metres.

The wall lies along the y-axis. The curve intersects the y-axis at point A and has its vertex at point B.

- (a) Write down the height in metres from which the ball was thrown. [1]
- (b) Calculate the maximum height, above the ground, reached by the ball. [3]
- (c) Find the horizontal distance from the base of the wall to the point at which the ball hits the ground. [2]

(This question continues on the following page)

https://xtremepape.rs/

(Question 13 continued)

Working:	
	Answers:
	(a)
	(b)
	(c)
	()

Please do not write on this page.

Answers written on this page will not be marked.

https://xtremepape.rs/

[2]

14.	The marks achieved by students taking a college entrance test follow a normal distribution
	with mean 300 and standard deviation 100 .

In this test, 10% of the students achieved a mark greater than k.

(a) Find the value of k.

Marron College accepts only those students who achieve a mark of at least 450 on the test.

- (b) Find the probability that a randomly chosen student will be accepted by Marron College. [2]
- (c) Given that Naomi attends Marron College, find the probability that she achieved a mark of at least 500 on the test. [2]

Working:	
-	
	Answers:
	(a)
	(a)
	(b)
	(c)

15. The amount of yeast, g grams, in a sugar solution can be modelled by the function,

$$g(t) = 10 - k(c^{-t})$$
 for $t \ge 0$

where t is the time in minutes.

The graph of g(t) is shown.

The initial amount of yeast in this solution is 2 grams.

(a) Find the value of k.

[2]

The amount of yeast in this solution after 3 minutes is 9 grams.

(b) Find the value of c.

[3]

(c) Write down the maximum amount of yeast in this solution.

[1]

(This question continues on the following page)

(Question 15 continued)

Working:	
g.	
	Answers:
	(a)
	(b)
	(c)

Please **do not** write on this page.

Answers written on this page will not be marked.

20FP20